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Abstract: This paper is denoted to study the effect of the group information of data in one-class kernel support
vector machines (OC-KSVMs) for classification accuracy and time consumed of multi-class classification data.
Two new classification methods based on OC-KSVMs are presented. One is OC-KSVM with maximum margin
from the origin and group information of data (briefly, MMOC-KSVM+) and another is OC-KSVM with hyper-
sphere and group information of data (briefly, HSOC-KSVM+). We proved theoretically that MMOC-KSVM and
HSOC-KSVM are equivalent for Gaussian RBF kernels. Experiments on three real-words data sets are performed
in order to test and evaluate the efficacy of the proposed methods. Experimental results indicate that the group
information of data can improve the classification accuracy of data and meanwhile increase the time consumed of
algorithms.

Key–Words: multi-class classification problem; One-class kernel SVM; group information of data; maximum
margin; hyper-sphere

1 Introduction
Over the last decades, kernel support vector machines
(KSVMs) have become a novel method for many
classification problems, such as object recognition
[1], classification of cancer morphologies [2], hand-
written characters and digit recognition [3-5] and so
on [6-10], because of their flexibility, computational
efficiency and capacity to handle dimensional data.
KSVMs try to find an optimal decision hyperplane in
the feature space by maximizing the margin or degree
of separation between different class data [11-12].

SVMs have been extended to handle multi-class
classification problems [13-14]. Since the standard
SVMs are designed for binary classification prob-
lems, multi-class classification problems are com-
monly solved by a decomposition to several binary
problems for which the standard SVMs can be used,
for instance, one-against-all (OAA) and one-against-
one (OAO) decompositions are often applied [15-18].
In OAA support vector machine (OAA-SVM), a clas-
sification problem with c(c ≥ 3) classes can be de-
composed to c binary problems by using OAA decom-
position, in which the sth class is separated from the
other training patterns, and then c decision functions
fs(x), s = 1, · · · , c can be obtained by using SVMs.
The classification of a pattern x̃ is performed accord-
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ing to maximal value of functions {fs(x̃)}c
s=1, that is,

the label of x̃ can be gotten as arg max
0≤s≤c

fs(x̃).

Recently, SVMs have been extended to handle
one-class classification problems, in which it is as-
sumed that information relative to the class of inter-
est, the target class, is only available. This means that
objects from the target class are only used and that no
information about the other classes is considered [19].
The task of one-class SVMs (OC-SVMs) is to deter-
mine a closed domain with maximal margin from the
origin or a hyper-sphere that contains almost all the
data of the target class but also allows discarding out-
liers. Any pattern point lying outside the enclosed re-
gion is considered as an outlier. OC-SVMs have been
used for document classification [20], classification of
sounds, classification of cancer morphologies and so
on. Rabaoui et al. [21] introduce an advanced dissimi-
larity measure for OC-SVMs and illustrate the perfor-
mance of these methods on an audio data. Mireille et
al. [22] propose a modified maximum margin OC-
SVM method as a discriminant framework to deal
with multi-class problems. Yuhua Li [23] proposes a
training point selection method for OC-SVMs. Heng
et al. [24] demonstrate the use of principal compo-
nents analysis for OC-SVMs as a dimension reduc-
tion tool. It is well-known that the learning ability of
OC-SVMs originates from the kernel trick, which has
been widely used to tackle complicated classification
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problems by a feature mapping from a original input
space to a kernel feature space. Although in general
the dimensionality of the feature space could be arbi-
trarily large or even infinite, the feature mapping can
be specified implicitly by a kernel function.

Nowadays, in order to improve classification ac-
curacy of SVMs, additional information hidden in
data is considered and a KSVM with structured data
(denoted by KSVM+) is presented by Vapnik [25].
A main difference between KSVM+ and KSVM is
that KSVM projects inputs into one space whereas
KSVM+ into two different spaces: decision space and
correcting space. Liang et al. [26] describe the ap-
plication of SVM+ and Multi Task Learning (MTL)
to classification problems. Cai et al. [27] propose a
new methodology for regression problems by means
of SVM+ and MTL. Liang et al. [28] propose a new
multi-task learning method (denoted by SVM+MTL)
for MTL problems.

Motivated by works mentioned above, this pa-
per is devoted to research the effect of the group in-
formation of data for multi-class classification prob-
lems. Two new kinds of classification methods
are presented by means of OC-KSVMs, which are
named as OC-KSVM with maximum margin from
the origin (briefly, MMOC-KSVM+) and OC-KSVM
with hyper-sphere (briefly, HSOC-KSVM+), respec-
tively. In order to test and evaluate the efficacy of
the proposed methods, a series of comparative ex-
periments with KSVM, KSVM+, OC-KSVM, OAO-
KSVM and OAA-KSVM are performed on Wiscon-
sin Breast Cancer (WBC), Wine and Kennedy Space
Center (KSC) three data sets. Experimental results
indicate that the group information of data can im-
prove the classification accuracy and meanwhile in-
crease the time consumed, and that MMOC-KSVM+
is better than HSOC-KSVM+.

The rest of the paper is organized as follows.
Bianry KSVM+ is briefly reviewed in Section 2 and
OC-KSVM is recalled in Section 3. MMOC-KSVM+
and HSOC-KSVM+ are introduced for handling one-
class classification problems in Section 4 and for han-
dling multi-class classification problems with group
information of data in Section 5. A series of compara-
tive experiments with OAO-KSVM, OAA-KSVM and
OC-KSVM are performed in Section 6 and some con-
clusions are given in Section 7.

2 Binary KSVM+
This section briefly recalls binary KSVM+ used in the
sequel. Let {(xi, yi)}n

i=1 ⊂ Rm × {±1} be a binary
linearly nonseparable data set, where yi ∈ {±1} is the
class label of the ith sample xi, i = 1, · · · , n. In the

last few years, kernel methods have attracted much
attention [29-30] and have become one of the most
popular approaches (see [31]). A kernel function k :
Rm ×Rm → R satisfies

k(x, y) = 〈ϕ(x), ϕ(y)〉,∀x, y ∈ Rm,

where ϕ : Rm → H and H are a feature mapping
and a feature space corresponding to kernel k, re-
spectively, and 〈, 〉 denotes the inner product in H .
By means of the feature mapping ϕ, binary linearly
nonseparable samples {xi}n

i=1 can be mapped into H
such that {ϕ(xi)}n

i=1 ⊂ H is approximately linearly
separable. The following is several common kernel
functions:

(i) linear kernel: k(x, y) = 〈x, y〉 for all x, y ∈
Rm.

(ii) polynomial kernel: k(x, y) = (〈x, y〉 + c)m

for all x, y ∈ Rm, where c ≥ 0 and m > 0 are user’
parameters.

(iii) Gaussian radius base function (RBF) kernel:
k(x, y) = exp(− 1

σ2 ‖ x− y ‖2) for all x, y ∈ Rm,
where σ > 0 is a user’ parameter.

2.1 Binary KSVM
For approximately linearly separable binary problem,
soft-margin SVM is to find an optimal separating hy-
perplane 〈ω, x〉+ b = 0 by considering the following
optimization problem:

min
ω,b,ξi

1
2‖ω‖2 + C

n∑
i=1

ξi

s.t. yi(〈ω, xi〉+ b) ≥ 1− ξi,
ξi ≥ 0, i = 1, . . . , n,

(1)

where ω ∈ Rm and b ∈ R are respectively the normal
vector and a bias of the separating hyperplane, C > 0
is a user’ parameter and {ξi}n

i=1 are slack variables.
By solving the Wolfe dual form of the problem (1):

min
αi

n∑
i,j=1

1
2yiyjαiαj〈xi, xj〉 −

n∑
i=1

αi

s.t.
∑n

i=1 αiyi = 0,
0 ≤ αj ≤ C, j = 1, . . . , n,

(2)

where {αi}n
i=1 are Lagrange multipliers, it can get

soft-margin SVM.
For linearly nonseparable binary problem, select

a proper kernel function k : Rm × Rm → R with the
feature space H and feature mapping ϕ : Rm → H
and map the samples {xi}n

i=1 into {ϕ(xi)}n
i=1. In this

case, the problem (1) can be rewritten as the following
optimization problem:

min
ω,b,ξi

1
2‖ω‖2 + C

n∑
i=1

ξi

s.t. yi(〈ω, ϕ(xi)〉+ b) ≥ 1− ξi,
ξi ≥ 0, i = 1, . . . , n,

(3)
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where ω ∈ H . By solving the Wolfe dual form of the
problem (3):

min
αi

1
2

n∑
i,j=1

αiαjyiyjk(xi, xj)−
n∑

i=1
αi

s.t.
∑n

i=1 αiyi = 0,
0 ≤ αj ≤ C, j = 1, . . . , n,

(4)

(ω, b) can be obtained by

ω =
∑n

i=1 αiyiϕ(xi),
b = yj −

∑n
i=1 αiyik(xi, xj),

for some αj ∈ (0, C). Consequently, the decision
function f(x) =

∑n
i=1 αiyik(xi, x) + b. The specific

algorithm is as follows.
Algorithm 1. (KSVM)
Step 1. Give a binary data set {(xi, yi)}n

i=1 ⊂
Rm × {±1}.

Step 2. Select a proper kernel function k : Rm ×
Rm → R and an appropriate parameter C > 0.

Step 3. Solve the problem (4) and obtain the op-
timal solution α∗ = (α∗1, . . . , α∗n)T .

Step 4. Select a positive component α∗j ∈ (0, C)
and calculate b∗ = yj −

∑n
i=1 yiα

∗
i k(xj , xi).

Step 5. Construct the decision function f(x) =∑n
i=1 α∗i yik(xi, x) + b∗.

Step 6. For a new sample x̃, it can be inferred that
x̃ belongs to class 1 if f(x̃) ≥ 0 and otherwise to class
-1.

2.2 Binary KSVM+
This subsection briefly recalls binary KSVM+, for de-
tails, see [25]. Let {(xi, yi)}n

i=1 ⊂ Rm × {±1} be a
binary linearly nonseparable data set with group in-
formation and put X = {xi}n

i=1, Y = {yi}n
i=1 and

X × Y = {(xi, yi)}n
i=1. Suppose that X is a union

of t groups (t > 1), nr is the number of samples in
group r and n =

∑t
r=1 nr. Put Xr = {xr

1, · · · , xr
nr
},

Yr = {yr
1, · · · , yr

nr
} and Tr = {1, · · · , nr}, then

X × Y = ∪t
r=1Xr × Yr.

The group information hidden in data is often
used to impose additional constraints on the slack
variables in the problem (3). By means of the group
information and kernel functions, each sample can be
mapped into two different spaces: a decision space Z
via the feature mapping ϕ : X → Z(zi = ϕ(xi))
corresponding to a kernel k and a correcting space Zr

via the feature mapping ϕr : Xr → Zr(zr
i = ϕr(xr

i ))
corresponding to a kernel kr, r ∈ {1, · · · , t}. By us-
ing binary KSVM in correcting space Zr, t correcting
functions fr(x) = 〈wr, z

r〉 + dr, r = 1, · · · , t can
be obtained. By imposing these correcting functions
onto slack variables of the problem (3):

ξr
i = 〈wr, z

r
i 〉+ dr, i ∈ Tr, r = 1, · · · , t,

we can obtain the following optimization problem,
which is an improvement of the problem (3):

min
ω,ωr,b,dr

1
2‖ω‖2 + υ

2

t∑
r=1

‖ωr‖2 + C
t∑

r=1

∑
i∈Tr

ξr
i

s.t. yi(〈ω · ϕ(xr
i )〉+ b) ≥ 1− ξr

i ,
ξr
i = 〈ωr · ϕr(xr

i )〉+ dr ≥ 0,
i ∈ Tr, r = 1, . . . , t,

(5)
where υ > 0 and C > 0 are user’ parameters and
b ∈ R and dr ∈ R are biases. υ adjusts the relative
weight of decision function and correcting functions
and C controls the trade-off between complexity and
the number of nonseparable samples. By solving the
Wolfe dual from of the problem (5):

min
αi,βi

1
2

n∑
i,j=1

αiαjyiyjk(xi, xj)−
n∑

i=1
αi

+ 1
2υ

t∑
r=1

∑
i,j∈Tr

(αr
i + βr

i − C)(αr
j

+βr
j − C)kr(xi, xj)

s.t.
∑n

i=1 αiyi = 0,∑
i∈Tr

(αr
i + βr

i − C) = 0, r = 1, . . . , t,
αi, βi ≥ 0, i = 1, . . . , n,

(6)

where {αi}n
i=1 and {βi}n

i=1 are Lagrange multipliers,
it gets

ω =
∑n

i=1 αiyiϕ(xi),
ωr = 1

υ

∑
i∈Tr

(αr
i + βr

i − C)ϕr(xr
i ),

b = yj −
∑n

i=1 αiyik(xi, xj),
dr = − 1

υ

∑
i∈Tr

(αr
i + βr

i − C)kr(xi, xj),

for some αj > 0. Proceed to the next step, the de-
cision function f(x) can be obtained. The specific
algorithm is as follows.

Algorithm 2. (KSVM+)
Step 1. Give a binary linearly nonseparable data

set X×Y and divide it into t > 1 groups Xr×Yr, r =
1, . . . , t according to the group information of data.

Step 2. Select proper kernel functions k : Rm ×
Rm → R and kr : Rm × Rm → R for group r, and
appropriate parameters C > 0 and υ > 0.

Step 3. Solve the problem (6) and obtain the op-
timal solution α∗ = (α∗1, . . . , α∗n)T .

Step 4. Calculate b∗ = yj −
∑n

i=1 α∗i yik(xi, xj)
for some α∗j > 0.

Step 5. Construct the decision function f(x) =∑n
i=1 α∗i yik(xi, x) + b∗.

Step 6. For a new sample x̃, it can be inferred that
x̃ belongs to class 1 if f(x̃) ≥ 0 and otherwise to class
-1.
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3 OC-KSVM
Binary KSVMs have been extended to handle one-
class classification problems, in which it is assumed
that information relative to the class of interest, the
target class, is only available. This means that sam-
ples from the target class are only used and that no
information about the other classes is considered. Un-
like binary KSVMs, the task of one-class KSVMs
(OC-KSVMs) is to determine a closed domain in
feature space with maximal margin from the ori-
gin or a closed-sphere that contains almost all the
data of the target class but also allows discarding
outliers. OC-KSVM determining a closed domain
with maximal margin from the origin is called max-
imum margin OC-KSVM (briefly, MMOC-KSVM)
and with closed-sphere is called hyper-sphere OC-
KSVM (briefly, HSOC-KSVM). In the following, we
briefly review MMOC-KSVM and HSOC-KSVM, for
details, see [19-24].

Let X = {xi}n
i=1 ⊂ Rm be a target class and H

and ϕ : Rm → H be the Reproducing Kernel Hilbert
Space (RKHS) and the feature mapping of a given ker-
nel k : Rm ×Rm → R, respectively.

3.1 MMOC-KSVM
The aim of MMOC-KSVM is to determine a hyper-
plane 〈ω, ϕ(x)〉 − ρ = 0 that separates most of the
data in X from the origin by maximizing the dis-
tance from the origin to the separating hyperplane.
The decision is given by the decision function f(x) =
〈ω, ϕ(x)〉 − ρ ≥ 0, where ω ∈ H and ρ ∈ R result
from the following modified optimization problem:

min
ω,ρ,ξi

1
2‖ω‖2 + C

n∑
i=1

ξi − ρ

s.t. 〈ω, ϕ(xi)〉 ≥ ρ− ξi,
ξi ≥ 0, i = 1, . . . , n,

(7)

where C > 0 is a user’ parameter and {ξi}n
i=1 are

slack variables. By solving the Wolfe dual form of the
problem (7):

min
αi

1
2

n∑
i,j=1

αiαjk(xi, xj)

s.t.
∑n

i=1 αi = 1,
0 ≤ αi ≤ C, i = 1, . . . , n,

(8)

where {αi}n
i=1 are Lagrangian multipliers, it gets

ω =
∑n

i=1 αiϕ(xi),
ρ =

∑n
i=1 αik(xi, xj),

for some αj ∈ (0, C). Consequently, the decision
function f(x) can be obtained. The specific algorithm
is as follows.

Algorithm 3. (MMOC-KSVM)
Step 1. Given a target class X = {xi}n

i=1 ⊂ Rm.
Step 2. Select a proper kernel function k : Rm ×

Rm → R and an appropriate parameter C > 0.
Step 3. Solve the problem (8) and obtain the op-

timal solution α∗ = (α∗1, . . . , α∗n)T .
Step 4. Calculate ρ∗ =

∑n
i=1 α∗i k(xi, xj) for

some α∗j ∈ (0, C).
Step 5. Construct the decision function f(x) =∑n

i=1 α∗i k(xi, x)− ρ∗.
Step 6. For a new sample x̃, it can be inferred that

x̃ belongs to class 1 if f(x̃) ≥ 0 and otherwise to class
-1.

3.2 HSOC-KSVM
Unlike MMOC-KSVM, the aim of HSOC-KSVM is
to determine a hyper-sphere r2 − ‖ϕ(x)− a‖2 ≥ 0
that contains almost all the data of the target class,
where r ∈ R and a ∈ H are the radius and center of
the hyper-sphere, respectively. The decision is given
by the decision function f(x) = r2 − ‖ϕ(x)− a‖2.
the radius r and the center a can be obtained by solv-
ing the following modified optimization problem:

min
r,a,ξi

r2 + C
n∑

i=1
ξi

s.t. ‖ϕ(xi)− a‖2 ≤ r2 + ξi,
ξi ≥ 0, i = 1, . . . , n,

(9)

where C > 0 is a user’ parameter and {ξi}n
i=1 are

slack variables. By solving the Wolfe dual form of the
problem (9):

min
αi

n∑
i,j=1

αiαjk(xi, xj)−
n∑

i=1
αik(xi, xi)

s.t.
∑n

i=1 αi = 1,
0 ≤ αi ≤ C, i = 1, . . . , n,

(10)

where {αi}n
i=1 are Lagrangian multipliers, it gets

a =
∑n

i=1 αiϕ(xi),
r2 = k(xk, xk) +

∑n
i,j=1 αiαjk(xi, xj)

−2
∑n

i=1 αik(xi, xk),

for some αk ∈ (0, C). Consequently, the decision
function can be obtained by

f(x) = r2 − ‖ϕ(x)− a‖2

= 2
∑n

i=1 αik(xi, x)− 2
∑n

i=1 αik(xi, xk)
+k(xk, xk)− k(x, x).

The specific algorithm is as follows.
Algorithm 4. (HSOC-KSVM)
Step 1 and Step 2 are same as Algorithm 3.
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Step 3. Solve the problem (10) and obtain the
optimal solution α∗ = (α∗1, . . . , α∗n)T .

Step 4. Calculate

r∗2 = k(xk, xk) +
∑n

i,j=1 α∗i α
∗
jk(xi, xj)

−2
∑n

i=1 α∗i k(xi, xk)

for some α∗k ∈ (0, C).
Step 5. Construct the decision function

f(x) = 2
∑n

i=1 α∗i k(xi, x)− 2
∑n

i=1 α∗i k(xi, xk)
+k(xk, xk)− k(x, x).

Step 6. For a new sample x̃, it can be inferred that
x̃ belongs to class 1 if f(x̃) ≥ 0 and otherwise to class
-1.

3.3 Equivalence between MMOC-KSVM
and HSOC-KSVM

This subsection mainly discusses the equivalence be-
tween MMOC-KSVM and HSOC-KSVM for Gaus-
sian RBF kernel:

k(x, y) = exp(− 1
σ2 ‖ x− y ‖2),∀x, y ∈ Rm.

In this case, The problem (10) can be represented
as:

min
αi

∑n
i,j=1 αiαjk(xi, xj)− 1

s.t.
∑n

i=1 αi = 1,
0 ≤ αi ≤ C, i = 1, . . . , n,

(11)

because k(x, x) = 1 for all x ∈ Rm. By solving the
problem (11), the decision function of HSOC-KSVM
can be obtained by

f(x) = 2
∑n

i=1 α∗i k(xi, x)− 2
∑n

i=1 α∗i k(xi, xk),

which just is the same as the decision function
of MMOC-KSVM. So, MMOC-KSVM and HSOC-
KSVM are equivalent for Gaussian RBF kernels.

4 OC-KSVM+
This section is devoted to study one-class classifica-
tion problems with group information of data. Let
X = {xi}n

i=1 ⊂ Rm be a target class with t groups
(t > 1). Let Xr = {xr

1, · · · , xr
nr
}, Tr = {1, · · · , nr}

and n =
∑t

r=1 nr, then X = ∪t
r=1Xr. The group in-

formation hidden in data is used to impose additional
constraints on the slack variables in the problems (7)
and (9). By means of the group information and ker-
nel functions, each sample can be mapped into two
different spaces: a decision space Z via the feature
mapping ϕ : X → Z(zi = ϕ(xi)) corresponding

to a kernel k and a correcting space Zr via the fea-
ture mapping ϕr : Xr → Zr(zr

i = ϕr(xr
i )) corre-

sponding to a kernel kr, r ∈ {1, · · · , t}. By using
OC-KSVM in the correcting space Zr, t correcting
functions fr(x), r = 1, · · · , t can be gotten. The fol-
lowing is a detailed discussion how to impose these
correcting functions onto slack variables of the prob-
lems (7) and (9).

4.1 MMOC-KSVM+
Firstly, by using MMOC-KSVM in the correcting
space Zr, we obtain t correcting functions

fr(x) =< ωr, ϕr(x) > −dr, r = 1, · · · , t,
and then construct the following optimization problem
by means of the idea of binary KSVM+:

min
ω,ωr,ρ,dr

1
2 ‖ω‖2 + υ

2

∑t
r=1 ‖ωr‖2 − ρ

+C
∑t

r=1

∑
i∈Tr

ξr
i

s.t. 〈ω, ϕ(xr
i )〉 ≥ ρ− ξr

i ,
ξr
i = 〈ωr, ϕr(xr

i )〉+ dr,
ξr
i ≥ 0, i ∈ Tr, r = 1, . . . , t,

(12)

where υ > 0 and C > 0 are user’ parameters. υ ad-
justs the relative weight of decision function and cor-
recting function and C controls the trade-off between
complexity and the number of nonseparable samples.
By solving the dual problem of the problem (12):

min
αi,βi

1
2

∑n
i,j=1 αiαjk(xi, xj) + 1

2υ

∑t
r=1

∑
i∈Tr

(αi

+βi − C)(αj + βj − C)kr(xi, xj)
s.t.

∑n
i=1 αi = 1,∑
i∈Tr

(αi + βi − C) = 0,
i ∈ Tr, r = 1, . . . , t,

(13)
where {αi}n

i=1 and {βi}n
i=1 are Lagrangian multipli-

ers, we can obtain

ω =
∑n

i=1 αiϕ(xi),
ρ =

∑n
i=1 αik(xi, xk),

ωr =
∑

i∈Tr
αiϕr(xi),

dr =
∑

i∈Tr
αikr(xi, xk),

for some αk ∈ (0, C). Proceed to the next step, the
decision function

f(x) =
∑n

i=1 αik(xi, x)−∑n
i=1 αik(xi, xk).

The specific algorithm is as follows.
Algorithm 5. (MMOC-KSVM+)
Step 1. Given a target class X = {x1, · · · , xn} ⊂

Rm with group information of data and divide it into
t groups Xr = {xr

1, . . . , x
r
nr
}, r = 1, . . . , t.
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Step 2. Select proper kernel functions k : Rm ×
Rm → R and kr : Rm × Rm → R and appropriate
parameters C > 0 and υ > 0.

Step 3. Solve the problem (13) and obtain the
optimal solution α∗ = (α∗1, . . . , α∗n)T .

Step 4. Calculate ρ∗ =
∑n

i=1 α∗i k(xi, xk) for
some α∗k > 0.

Step 5. Construct the decision function f(x) =∑n
i=1 α∗i k(xi, x)−∑n

i=1 α∗i k(xi, xk).
Step 6. For a new sample x̃, it can be inferred that

x̃ belongs to class 1 if f(x̃) ≥ 0 and otherwise to class
-1.

4.2 HSOC-KSVM+
Unlike MMOC-KSVM+, The aim of HSOC-KSVM+
is to train a hyper-plane b2 − ‖ϕ(x)− a‖2 ≥ 0 in
the feature space by means of the group information
of data that contains almost all the data of the target
class. The decision is given by the decision function
f(x) = b2 − ‖ϕ(x)− a‖2. By using HSOC-KSVM
in the correcting space Zr, t correcting functions can
be obtained by

fr(x) = b2
r − ‖ϕr(x)− ar‖2 , r = 1, · · · , t,

where br ∈ R and ar ∈ Zr are the radius and cen-
ter of the hyper-sphere in Zr. Similar to the MMOC-
KSVM+, we can construct the following optimization
problem:

min
a,b,ar,br

b2 + υ
∑t

r=1 b2
r + C

∑t
r=1

∑
i∈Tr

ξr
i

s.t. ‖ϕ(xr
i )− a‖2 ≤ b2 + ξr

i ,

ξr
i = b2

r − ‖ϕr(xr
i )− ar‖2 ,

ξr
i ≥ 0, i ∈ Tr, r = 1, . . . , t,

(14)

where C > 0 and υ > 0 are user’ parameters
and {ξi}n

i=1 are slack variables. Considering the La-
grangian function of the problem (14):

L(a, b, ar, br, αi, βi) = b2 + υ
∑t

r=1 b2
r

+C
∑t

r=1

∑
i∈Tr

(b2
r − ‖ϕr(xr

i )− ar‖2)
+

∑t
r=1

∑
i∈Tr

αi(‖ϕ(xr
i )− a‖2

−b2 − b2
r + ‖ϕr(xr

i )− ar‖2)
−∑t

r=1

∑
i∈Tr

βi(b2
r − ‖ϕr(xr

i )− ar‖2),

(15)

where {αi}n
i=1 and {βi}n

i=1 are nonnegative La-
grangian multipliers, and letting ∂L

∂a = ∂L
∂b = ∂L

∂ar
=

∂L
∂br

= 0, it can be deduced that

∑n
i=1 αi = 1,∑
i∈Tr

(αi + βi − C) = υ,
a =

∑n
i=1 αiϕ(xi),

ar = 1
υ

∑
i∈Tr

(αi + βi − C)ϕr(xr
i ).

(16)

substituting (16) into (15), the Wolfe dual form of the
problem (14) can be gotten:

min
αi,βi

∑n
i,j=1 αiαjk(xi, xj)−

∑n
i=1 αik(xi, xi)

+ 1
υ

∑t
r=1

∑
i,j∈Tr

(αi + βi − C)(αj

+βj − C)kr(xi, xj)
−∑t

r=1

∑
i∈Tr

(αi + βi − C)kr(xi, xi)
s.t.

∑n
i=1 αi = 1,∑
i∈Tr

(αi + βi − C) = υ, r = 1, . . . , t,
αi, βi ≥ 0, i = 1, . . . , n.

(17)
By solving the problem (17), it has

a =
∑n

i=1 αiϕ(xi),
b2 = k(xk, xk) +

∑n
i,j=1 αiαjk(xi, xj)

−2
∑n

i=1 αik(xi, xk),
ar = 1

υ

∑
i∈Tr

(αi + βi − C)ϕr(xi),
b2
r = kr(xk, xk)− 2

υ

∑
i∈Tr

(αi + βi − C)kr(xi, xk)
+ 1

υ2

∑
i,j∈Tr

(αi + βi − C)(αj + βj − C)kr(xi, xj),

for some αk ∈ (0, C). Consequently, the decision
function can be obtained. The specific algorithm is as
follows.

Algorithm 6. (HSOC-KSVM+)
Step 1 and Step 2 are the same as in Algorithm 5.
Step 3. Solve the problem (17) and obtain the

optimal solution α∗ = (α∗1, . . . , α∗n)T .
Step 4. Calculate

b∗2 = k(xk, xk) +
∑n

i,j=1 α∗i α
∗
jk(xi, xj)

−2
∑n

i=1 α∗i k(xi, xk),

for some α∗k > 0.
Step 5. Construct the decision function

f(x) = 2
∑n

i=1 α∗i k(xi, x)− 2
∑n

i=1 α∗i k(xi, xk)
+k(xk, xk)− k(x, x).

Step 6. For a new sample x̃, it can be inferred that
x̃ belongs to class 1 if f(x̃) ≥ 0 and otherwise to class
-1.

5 OC-KSVM+ for multi-class classi-
fication problems

This section considers the applications of MMOC-
KSVM+ and HSOC-KSVM+ for multi-class classifi-
cation problems with group information of data. Let
{(xi, yi)}n

i=1 ⊂ Rm × {1, · · · , c} be a sample set of
a c(c ≥ 3) class problem with t(t ≥ 2) groups in-
formation. Put X = {xi}n

i=1 and Y = {yi}n
i=1. Let

Xi = {xi
1, · · · , xi

ni
} be the set of samples belong-

ing to the ith class, Y i = {yi
1, · · · , yi

ni
} the class in-

dex set corresponding to Xi and n =
∑c

i=1 ni. Let
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Xi
r = {xir

1 , · · · , xir
nir
} be the set of samples belong-

ing to the ith class with rth group information, Y i
r =

{yir
1 , · · · , yir

nir
}, Tir = {1, · · · , nir}, r = 1, · · · , t and

ni =
∑

r∈Tir
nir.

The decision function fi(x) of the ith class can
be obtained by using MMOC-KSVM+ or HSOC-
KSVM+. For a new sample x̃, it can be inferred that
x̃ belongs to the jth class if fj(x̃) = max1≤i≤c fi(x̃).

6 Experiments and results analysis
In order to test and evaluate the efficacy of MMOC-
KSVM+ and HSOC-KSVM+, a series of compara-
tive experiments with KSVM, KSVM+, OC-KSVM,
OAO-KSVM and OAA-KSVM are performed on
WBC, Wine and KSC three data sets, which are taken
respectively from [32] and [33]. Gaussian RBF ker-
nel k(x, x′) = exp{− 1

σ2 ‖x − x′‖2} is used in all ex-
periments. All the accuracy in experiments is the test
accuracy with five-fold cross validation method. In
Tables 1-3, CA and TC denote classification accuracy
and time consumed, respectively.

6.1 Experiments on WBC data set
WBC data set includes 699 instances composed of
two classes (benign and malignant), each of one has
9 attributes. There are 16 instances that contain a sin-
gle missing (i.e., unavailable) attribute value. We ran-
domly select 600 instances in the rest of 683 instances
for comparative experiments with KSVM, KSVM+
and OC-KSVM.

Due to the equivalence of MMOC-KSVM and
HSOC-KSVM for Gaussian RBF kernel, they can be
unified written as OC-KSVM and the class ’benign’ is
regarded as the target class. In MMOC-KSVM+ and
HSOC-KSVM+, data can be separated as 3 groups by
means of the attribute ’Clump Thickness’: group 1
contains 170 instances with values of Clump Thick-
ness being less than or equal to 2, group 2 contains
255 instances with values of Clump Thickness be-
longing to the interval (2, 5] and group 3 contains 175
instances with values of Clump Thickness belonging
to the interval (5, 10]. Kernel parameter σ is taken as
5.5 in KSVM and OC-KSVM and kernel parameters
σ, σ1, σ2 and σ3 are taken respectively as 5.5, 15, 1
and 0.1 in KSVM+ and as 15, 5, 10 and 20 in MMOC-
KSVM+ and HSOC-KSVM+. Experiment results are
shown in Table 1.

6.2 Experiments on Wine data set
Wine data set includes 178 instances composed of
three classes, each of one has 13 attributes. We
randomly select 45 instances from every class for

comparative experiments with OAO-KSVM, OAA-
KSVM and OC-KSVM.

In OC-KSVM, the labels of all the data belong-
ing to class of interest are set to 1 and the labels
of all other data are set to -1. In MMOC-KSVM+
and HSOC-KSVM+, data are separated 2 groups by
means of the attribute ’Hue’: group 1 contains 58 in-
stances with values of Hue being less than or equal
to 0.9 abd group 2 contains 77 instances with val-
ues of Hue being more than 0.9. The kernel param-
eter σ is taken respectively as 480, 480 and 400 in
OAO-KSVM, OAA-KSVM and OC-KSVM and ker-
nel parameters σ, σ1 and σ2 are taken respectively as
400, 320 and 480 in MMOC-KSVM+ and HSOC-
KSVM+. Experiment results are lasted in Table 2.

6.3 Experiments on KSC data set
KSC data set includes 5211 instances composed of 13
classes, each of one has 176 attributes. We select 5
classes (Spartina marsh, Cattail Marsh, Salt marsh,
Mud flats and water) and randomly select 100 in-
stances from each class for comparative experiments
with OAO-KSVM, OAA-KSVM and OC-KSVM.

In OC-KSVM, the labels of all the data belong-
ing to class of interest are set to 1 and the labels
of all other data are set to -1. In MMOC-KSVM+
and HSOC-KSVM+, data are separated 2 groups by
means of the first attribute: group 1 contains 194 in-
stances with values of the first attribute being less than
or equal to 10 and group 2 contains 306 instances with
values of the first attribute being more than 10. The
kernel parameter σ is taken as 100 in OAO-KSVM,
OAA-KSVM and OC-KSVM and kernel parameters
σ, σ1 and σ2 are taken respectively as 100, 20 and 30
in MMOC-KSVM+ and HSOC-KSVM+. Experiment
results are shown in Table 3.

6.4 Experiment results analysis
It can be seen from Table 1 that (1) the classification
accuracy of KSVM with group information of data
(KSVM+, MMOC-KSVM+ and HSOC-KSVM+) is
higher than that without group information (KSVM
and OC-KSVM) and the time consumed with group
information is a lot more than that without group
information. This indicates that group information
of data can improve the classification accuracy and
meanwhile increase the time consumed. (2) the clas-
sification accuracy of MMOC-KSVM+ is the highest
(95.33%). (3) Although HSOC-KSVM+ is slightly
lower than binary KSVM+ in classification accuracy,
HSOC-KSVM+ is much faster than binary KSVM+
in time consumed. (4) HSOC-KSVM+ is about 1.6
times faster than MMOC-KSVM+, but the classifica-
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Table 1: CA and TC on WBC data set
KSVM KSVM+ OC-KSVM MMOC-KSVM+ HSOC-KSVM+

σ 5.5 5.5 5.5 15 15
σ1 15 5 5
σ2 1 10 10
σ3 0.1 20 20
υ 10 1 1
C 0.01 0.01 0.01 0.00001 0.00001

TC(s) 50.7 648.8 12.1 202.4 126.4
CA(%) 82 92.5 90.83 95.33 91.83

Table 2: CA and TC on Wine data set
OAO-KSVM OAA-KSVM OC-KSVM MMOC-KSVM+ HSOC-KSVM+

σ 480 480 400 400 400
σ1 320 320
σ2 480 480
υ 2 2
C 0.1 0.1 0.1 0.1 0.1

TC(s) 2.8 5.2 0.9 1.99 1.4
CA(%) 69.63 57.78 68.15 71.85 69.63

tion accuracy of HSOC-KSVM+ is about 3.5% lower
than MMOC-KSVM+.

It can be seen from Table 2 that (1) The classi-
fication accuracy of MMOC-KSVM+ is the highest
(71.85%). (2) HSOC-KSVM+ is faster than MMOC-
KSVM+, but is 2.22% lower than MMOC-KSVM+
for classification accuracy. (3) Although the clas-
sification accuracies of HSOC-KSVM+ and OAO-
KSVM are the same (69.63%), HSOC-KSVM+ is 2
times faster than OAO-KSVM. (4) The OC-KSVM
method is the fastest one in terms of time consumed.

It can be seen from Table 3 that (1) although the
classification accuracies of five classifiers are almost
the same, OC-KSVM, MMOC-KSVM+ and HSOC-
KSVM+ are much faster than OAO-KSVM and
OAA-KSVM. (2) OC-KSVM is faster than MMOC-
KSVM+ and HSOC-KSVM+

In order to be more intuitive to compare the clas-
sification accuracies of seven classifiers, a histogram
is provided in Figure 1.

According to the above analysis, we can conclude
that the group information of data really can improve
the classification accuracy of OC-KSVMs, but at the
same time it increases the time consumed.

7 Conclusion
This paper mainly studies the effect of the group in-
formation of data in OC-KSVMs for classification
accuracy and time consumed of multi-class classifi-
cation problems, and presents two new classification
methods MMOC-KSVM+ and HSOC-KSVM+. Ac-
cording to the experiment results, we know that the
group information of data really can improve the clas-

sification accuracy of OC-KSVMs. But in MMOC-
KSVM+ and HSOC-KSVM+ all the data are pro-
jected into two different spaces (decision space and
correcting space), which results in the time consumed
of the proposed methods is greatly increased. In addi-
tion, The selection of modeling parameters and kernel
parameters can also effect the classification accuracy
and time consumed of algorithms. Therefore, how to
choose suitable parameters and how to develop a fast
algorithm for MMOC-KSVM+ and HSOC-KSVM+
are our next study work.
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